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Aim

Model that could accommodate more complex data structures

I hierarchical: cancer patients clustered within health geographies
(small areas)

Log-baseline excess hazard modelled using flexible function

Include non-linear and non-proportional effects

Inference within Bayesian framework suitable for these model
specifications

First step: introduce flexible Bayesian model for the excess
hazard (without ‘random effects ’)
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Relative survival setting

Observed hazard decomposed as

h(t ;x) = hE(t ;x) + hP(A + t ; z)

t = (t1, . . . , tn) set of event times, and A=age at diagnosis

x = (x1, . . . , xp) set of covariates: age, gender, deprivation, comorbidities,
tumour stage,. . . , and z ⊂ x

hE(t ;x) - hazard due to cancer: excess hazard

hP(A + t ; z) - hazard due to all other causes of death: expected hazard
in the general population or background mortality
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Main estimators: non-parametric and parametric

Non-parametric estimator for net survival: ‘gold standard’ (Perme
et al., 2012)

Parametric and semi-parametric estimators (frequentist inference):

I Regression models on the excess hazard scale
(Estève et al., 1990; Remontet et al., 2007; Charvat et al., 2016)

I Regression models on the cumulative excess hazard scale
(Lambert et al., 2009)

I GLM formulation modelling the number of deaths
(Dickman et al., 2003)
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Log-likelihood
tn∑
i

(
δi .log

(
hE(ti ;x) + hP(A + ti ; z)

)
−
∫ ti

0

(
hE(u;x) + hP(A + u; z)

)
du
)

hE(ti ;x) = hE0(t).exp
(∑

j∈J

βj .xj +
∑
k∈K

fk (xk ) +
∑
l∈L

gl(t).xl

)
hE0(t) - baseline excess hazard commonly modelled using flexible functions
(restricted cubic splines* or B-splines*)
Variables in set J modelled with a linear effect
Non-linear effects in set K modelled using flexible functions*
Non-proportional effects in set L modelled including interaction between
covariates and time

Added complexity: likelihood formulation with no closed-form expression

Common solution: use numerical integration rules
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Choice of splines: Low-Rank Thin Plate splines

Likelihood function remains tractable, avoiding numerical integration

First-order polynomials - penalised splines

Simple yet enough flexibility to capture the shapes of excess hazards

Piecewise linear log-baseline excess hazard model:

Given a partition of the follow-up time range as 0 = t̃0 < t̃1 < . . . < t̃k =∞

log(hE0(t ;α
∗)) = α∗

0 + α∗
1t +

K∑
k=2

α∗
k (|t − t̃k−1| − |̃tk−1|)

Implementation involves a series of transformations to the spline parameters
α∗, as well as constructing a time design matrix and a penalty transformation
matrix (Crainiceanu et al. 2005 and Murray et al., 2016)
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Illustration: using population-based cancer data

Data: All adult men diagnosed with colon cancer during 2009 in
London, and followed-up until the 31th December 2015.

Variables available for analysis:

I full dates of diagnosis, last follow-up and death

I vital status indicator (dead or alive at the end of follow-up)

I age at diagnosis (15-99 years)

I deprivation category (Index of Multiple Deprivation - income
domain)

Background mortality: Life tables for England stratified by
calendar year (2009-2015), age, gender, deprivation category and
region of residence
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Illustration: Model set-up
Age at diagnosis (A) and deprivation category (dep) as main effects:

log(hE(t |α;β; γ)) = (α0,0 + α1,0A) + (α0,1 + α1,1A)t

+
K∑

k=2

(α0,k + α1,k A)(|t − t̃k−1| − |̃tk−1|) [part 1]

+ β∗
1 (A− A) +

J∑
j=2

β∗
j (|A− Ãj−1|3 − |A− Ãj−1|3) [part 2]

+ γ ∗ dep [part 3]

part 1 spline modelling the baseline log-excess hazard using 4 partitions
of the observed follow-up time, and incorporating the time-dependent
effect of age at diagnosis.

part 2 spline modelling the non-linear effect of age at diagnosis using 3
partitions (J=3) of the observed age range.

part 3 formulates the linear and proportional effect of deprivation.
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Illustration: Bayesian estimation

Prior distributions used for the parameters:

I for the baseline log-excess hazard:

α0 ∼ N(0, 104), α1 ∼ N(0, 104)

αk |σα
iid∼ N(0, σ2

α), for k=2, . . . , K and σα ∼ U(0.01, 100)

Model fitted in JAGS accessed via R2Jags

30,000 MCMC samples from each posterior distribution

Examination of trace and density plots did not indicate any
convergence issues

MCMC samples were save and posterior distributions for excess
hazard and net survival were derived in a post-estimation
procedure
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Illustration: Calculating posterior distributions
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Illustration: Summarising posterior distributions
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Illustration: Posterior Excess Hazard Ratios (mean)
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Illustration: Posterior Net survival (mean)
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