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Research question
 Competing risks setting (Cause I :Death due to cancer, Cause II: Death due to other causes)

 Choice of timescale when modeling each event 

Death due to cancer :           Time since diagnosis

Death due to other causes:  Attained age 

 Use of the ”wrong” timescale/time since diagnosis for cause II : 

Does the modeling of age at diagnosis play a role in the resulting bias?

• Cause 2: Time since diagnosis: ℎ1 𝑡 𝑎0, 𝑥 , 𝑎0 linear

• Cause 2: time since diagnosis: ℎ1 𝑡 𝑎0, 𝑥 , 𝑎0 splines

• Cause 2: time since diagnosis: ℎ1 𝑡 𝑎0, 𝑥 , 𝑎0
splines plus time- age interaction terms

Natural modeling approach for timescale:
Cause 2: Attained age : ℎ2 𝑎 𝑥 , 𝑎 = 𝑎0 + 𝑡

”Wrong” timescale approaches



Competing risk setting

Survival analysis that aims to correctly estimate the marginal probability of an event in the presence of competing events

Each competing event is an absorbing state

Estimation of probability of each competing event taking into account the risk of all potential events (estimation of CIFs)

Cummulative Incidence Function (CIF): marginal probability of a certain event as a function of its cause-specific probability 
and overall survival probability



Competing risk setting
Modeling on attained age for death due to other causes

other

other



Competing risks and Relative survival framework

survival



Competing risks and Relative survival framework
Crude probabilities from both settings

attained age for cause 2 



Background

Korn et al (1997) suggested 2 conditions under which attained age and time since diagnosis approaches should give same 
estimates

• Baseline hazard is an exponential function of time 

• Even if not, the effect estimates should be very close if covariate X is independent of baseline age a0

Benichou et al, 2004

• If X a0, then no bias due to confounding but still potential bias towards null if model misspecification of a0

• If baseline hazard not exponential upwards confounding bias of age ta baseline but quite small

 Chalise et al 2012 notes: 

• Baseline hazard follows gompertz attained age vs time since diagnosis- linearly adjusted for baseline age approach should 
give the same results

• When the chronological age is the correct timescale, the time on study time-scale model is reasonably                         
close to the attained age time-scale model.

* The bibliography is based on regular survival analysis where one event is studied and the effect of interest is the beta coefficient



Scenarios overview- Compared approaches

Scenarios

For cause II

Baseline hazard
On attained age

Age-Gender 

dependence

HR of gender for cause 2

1 Weibull Yes Constant HR= 0.7

2 Weibull Yes Time varying HR: 

0.4 at 20 to 1 at 100 of attained age

3 Weibull No Constant HR= 0.7

4 Weibull No Time varying HR: 

0.4 at 20 to 1 at 100 of attained age

5 Other hazard shape Yes Constant HR= 0.7

6 Other hazard shape Yes Time varying HR: 

0.4 at 20 to 1 at 100 of attained age

7 Other hazard shape No Constant HR= 0.7

8 Other hazard shape No Time varying HR: 

0.4 at 20 to 1 at 100 of attained age

9 Gompertz Yes Constant HR= 0.7

10 Gompertz Yes Time varying HR: 

0.4 at 20 to 1 at 100 of attained age

11 Gompertz No Constant HR= 0.7

12 Gompertz No Time varying HR: 

0.4 at 20 to 1 at 100 of attained age

Cause I Timescale Modelling of age at diagnosis

Only approach Time since diagnosis 4 spline terms

Cause II Timescale Modelling of age at diagnosis

1st approach (“correct”) Attained age -

2nd approach Time since diagnosis Linear term

3rd approach Time since diagnosis 4 spline terms

4th approach Time since diagnosis 4 spline terms for the main effect+ 3  spline terms 

for the age at diagnosis-time since diagnosis 

interaction

Scenarios

For cause I

Baseline hazard
On time since diagnosis

Age-Gender 

dependence

HR of gender for cause 2

1 , 2 Mixture of weibulls

Quadratic effect of age
Yes/No Constant HR= 0.95



Effect of gender, Baseline hazards, Age-gender dependence scenarios

• Age at diagnosis-Gender independence: Age at diagnosis~N (65,15)
• Age at diagnosis-Gender dependence: Age at diagnosis~N (63,15) for males, Age at diagnosis~N (67,15) for females



Simulation results overview: Use of RShiny interactive graphs
For each scenario, for t=1,2,3,4,5,6,7,8,9,10 years after diagnosis, for males and females over ages at 
diagnosis 50,60,70,80,90

 Bias in CIF1 and CIF2

Monte Carlo error in estimations

 % Coverage of true CIF values

 Relative efficiency compared to attained age approach

 Estimated HR of gender

 Estimated CIF differences and ratios (males vs females) from each approach and comparison with truth

 Convergence of each model



Results-Discussion

1. The linear age term approach for cause 2 leads to heavily biased results both for CIF2 for most scenarios as expected. 

2. All approaches are unbiased for CIF1 (at α0=90 the linear approach heavily biased)

3. In non PH scenarios, for α0=60 and 90 and hazard ”Other”, the bias in CIF2 for females under the single timescale approaches
(splines, spline+interaction) is noticeably bigger compared to that of the ”standard” approach

4. For extreme ages (α0=90), the bias in CIF1 appears to smaller in the single timescale approaches (splines, splines+interaction)

 Even if we model death due to other causes with the ”wrong” underlying timescale, we will not necessarily get bigger bias 
compared to modeling using the correct timescale, provided we include the effect of age at diagnosis in the appropriate way

We argue that using the attained age as underlying timescale when this is the ”natural” choice, will result to an unbiased- simple 
model, less prone to misspecification. 


