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Clinical context

Non-small-cell lung carcinoma (NSCLC):

I Most common type of lung cancer (≈85%)

I Leading cause of cancer death in the UK

Surgery: recommended treatment for early stage NSCLC

Mean age of NSCLC patients at diagnosis ≈73 years BUT:

I the chance of receiving surgery decreases with age1

I older patients often excluded from clinical trials

⇒ Lack of available evidence of the benefits of surgery
on survival among older NSCLC patients

Emulated trials & immortal-time bias LSHTM - October 7th , 2019 2 25



Background

Clinical context

Challenges

Trial emulation

Methods

Duplication and
censoring

Weights

Outcome model

Balance

1-year survival

Discussion

Clinical context

Non-small-cell lung carcinoma (NSCLC):

I Most common type of lung cancer (≈85%)

I Leading cause of cancer death in the UK

Surgery: recommended treatment for early stage NSCLC

Mean age of NSCLC patients at diagnosis ≈73 years BUT:

I the chance of receiving surgery decreases with age1

I older patients often excluded from clinical trials

⇒ Lack of available evidence of the benefits of surgery
on survival among older NSCLC patients

Emulated trials & immortal-time bias LSHTM - October 7th , 2019 2 25



Background

Clinical context

Challenges

Trial emulation

Methods

Duplication and
censoring

Weights

Outcome model

Balance

1-year survival

Discussion

Clinical context

Non-small-cell lung carcinoma (NSCLC):

I Most common type of lung cancer (≈85%)

I Leading cause of cancer death in the UK

Surgery: recommended treatment for early stage NSCLC

Mean age of NSCLC patients at diagnosis ≈73 years BUT:

I the chance of receiving surgery decreases with age1

I older patients often excluded from clinical trials

⇒ Lack of available evidence of the benefits of surgery
on survival among older NSCLC patients

Emulated trials & immortal-time bias LSHTM - October 7th , 2019 2 25



Background

Clinical context

Challenges

Trial emulation

Methods

Duplication and
censoring

Weights

Outcome model

Balance

1-year survival

Discussion

Clinical context

Non-small-cell lung carcinoma (NSCLC):

I Most common type of lung cancer (≈85%)

I Leading cause of cancer death in the UK

Surgery: recommended treatment for early stage NSCLC

Mean age of NSCLC patients at diagnosis ≈73 years BUT:

I the chance of receiving surgery decreases with age1

I older patients often excluded from clinical trials

⇒ Lack of available evidence of the benefits of surgery
on survival among older NSCLC patients

Emulated trials & immortal-time bias LSHTM - October 7th , 2019 2 25



Background

Clinical context

Challenges

Trial emulation

Methods

Duplication and
censoring

Weights

Outcome model

Balance

1-year survival

Discussion

Using observational data

Observational studies: valuable sources of information for
causal inference

Challenge 1: confounding

Challenge 2: immortal-time bias
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Trial emulation

Framework to emulate trials from observational data2

Involves the definition of a target trial (ideal trial) we would
like to conduct

Then, a causal analysis of observational data can be viewed as
an attempt to emulate this target trial

Emulated trials & immortal-time bias LSHTM - October 7th , 2019 4 25



Background

Clinical context

Challenges

Trial emulation

Methods

Duplication and
censoring

Weights

Outcome model

Balance

1-year survival

Discussion

Trial emulation

Framework to emulate trials from observational data2

Involves the definition of a target trial (ideal trial) we would
like to conduct

Then, a causal analysis of observational data can be viewed as
an attempt to emulate this target trial

Emulated trials & immortal-time bias LSHTM - October 7th , 2019 4 25



Background

Clinical context

Challenges

Trial emulation

Methods

Duplication and
censoring

Weights

Outcome model

Balance

1-year survival

Discussion

Trial emulation

Framework to emulate trials from observational data2

Involves the definition of a target trial (ideal trial) we would
like to conduct

Then, a causal analysis of observational data can be viewed as
an attempt to emulate this target trial

Emulated trials & immortal-time bias LSHTM - October 7th , 2019 4 25



Background

Clinical context

Challenges

Trial emulation

Methods

Duplication and
censoring

Weights

Outcome model

Balance

1-year survival

Discussion

Trial emulation

Framework to emulate trials from observational data2

Involves the definition of a target trial (ideal trial) we would
like to conduct

Then, a causal analysis of observational data can be viewed as
an attempt to emulate this target trial

Emulated trials & immortal-time bias LSHTM - October 7th , 2019 4 25



Background

Clinical context

Challenges

Trial emulation

Methods

Duplication and
censoring

Weights

Outcome model

Balance

1-year survival

Discussion

Emulation & immortal-time

In observational studies, immortal-time bias occurs when T0

and treatment initiation do not coincide

In our study: median time between NSCLC diagnosis (T0) and
surgery= 29 days [0;49]
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Emulation & immortal-time
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Data

Data: England Cancer registry linked to EHR data
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Question
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Inclusion criteria
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Exposure and outcome
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Estimand
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Analysis
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Estimand
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Estimand
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Estimand
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Duplication and censoring

Trial arm 6= observed treatment
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Censoring weights

Model 1: weight model

Weights at each time of event including: age, sex, deprivation,
stage, performance status, comorbidities, emergency presentation

To estimate these weights we compared:

I Cox proportional hazards model

I Flexible Cox model using GAM: Cox model with smooth
functions (penalized splines) for continuous covariates3

I Survival forest: ensemble method to estimate non
parametrically the survivor function4
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Outcome model

Model 2: outcome model

Comparison of survival functions

On the original dataset:

I Naive approach: unweighted Kaplan-Meier

I G-computation using a flexible hazard regression model
(B-splines)4

On the duplicated dataset:
I Unweighted Kaplan-Meier

I Weighted Kaplan-Meier (with the 3 sets of weights)
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Balance at 6 months

Standardised difference at 6 months (%)
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Balance over time: an example
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1-year survival
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Impact of the weight model
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HRs and Differences in Survival

Method n Difference in
1 year Survival (%)

Näıve (unadjusted) 2309 22.4 [18.1;26.9]
G-computation* 2309 13.7 [10.2;18.0]
Emulation** 4618

Unweighted 17.4 [14.6; 20.1]
IPCW-Cox weights 10.9 [7.9; 15.3]
IPCW-GAM weights 10.4 -
IPCW-SF weights 10.7 ?

*Normal-based bootstrap confidence interval.

The difference in RMST is another useful measure in this
context
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Discussion

Illustration of the use of trial emulation to establish the
causal effect of early surgery among older NSCLC patients

Balance between arms over time using graphical methods

Better balance obtained using a flexible weight model

Further work needed to:

I Develop more flexible weighted analysis models

I Determine how to estimate the variance of different measures
of interest, accounting for uncertainty in weight estimation

I Investigate the performance of survival forests in this context
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