



Emulating a target trial from observational data in the presence of immortal-time bias

Clémence Leyrat, Camille Maringe, Sara Benitez Majano, Matthew Smith, Aimilia Exarchakou, Bernard Rachet, Aurélien Belot

> Cancer Survival Group, London School of Hygiene and Tropical Medicine, UK Department of Medical Statistics, London School of Hygiene and Tropical Medicine, UK

> > Research supported by Cancer Research UK (grant number C7923/A18525)

Emulated trials & immortal-time bias

LSHTM - October 7th, 2019



### Non-small-cell lung carcinoma (NSCLC):

- Most common type of lung cancer ( $\approx$ 85%)
- Leading cause of cancer death in the UK

#### Background

Clinical context Challenges Trial emulation

#### Methods

Duplication and censoring Weights Outcome model Balance 1-year survival



### Non-small-cell lung carcinoma (NSCLC):

- Most common type of lung cancer (pprox85%)
- Leading cause of cancer death in the UK

### Surgery: recommended treatment for early stage NSCLC

#### Background

Clinical context Challenges Trial emulation

#### Methods

Duplication and censoring Weights Outcome model Balance 1-year survival



### Non-small-cell lung carcinoma (NSCLC):

- Most common type of lung cancer ( $\approx$ 85%)
- Leading cause of cancer death in the UK

### Surgery: recommended treatment for early stage NSCLC

Mean age of NSCLC patients at diagnosis  $\approx$ 73 years BUT:

- the chance of receiving surgery decreases with age<sup>1</sup>
- older patients often excluded from clinical trials

#### Background

Clinical context Challenges Trial emulation

#### Methods

Duplication and censoring Weights Outcome model Balance 1-year survival



### Non-small-cell lung carcinoma (NSCLC):

- Most common type of lung cancer ( $\approx$ 85%)
- Leading cause of cancer death in the UK

### Surgery: recommended treatment for early stage NSCLC

Mean age of NSCLC patients at diagnosis  $\approx$ 73 years BUT:

- the chance of receiving surgery decreases with age<sup>1</sup>
- older patients often excluded from clinical trials

**Lack of available evidence** of the benefits of surgery on survival among older NSCLC patients

#### Background

Clinical context Challenges Trial emulation

#### Methods

Duplication and censoring Weights Outcome model Balance 1-year survival

# Using observational data



# **Observational studies**: valuable sources of information for **causal inference**



Clinical context

Challenges

#### Methods

Duplication and censoring Weights Outcome model Balance 1-year survival

# Using observational data



# **Observational studies**: valuable sources of information for **causal inference**

Challenge 1: confounding

Background

Clinical context

Challenges

#### Methods

Duplication and censoring Weights Outcome mode Balance 1-year survival

Discussion

Emulated trials & immortal-time bias

# Using observational data







### Framework to emulate trials from observational data<sup>2</sup>



Clinical contex Challenges

Trial emulation

#### Methods

Duplication and censoring Weights Outcome model Balance 1-year survival



### Framework to emulate trials from observational data<sup>2</sup>

# Involves the definition of a **target trial** (ideal trial) we would like to conduct

#### Background

Clinical contex Challenges

#### Trial emulation

#### Methods

Duplication and censoring Weights Outcome mode Balance 1-year survival



### Framework to emulate trials from observational data<sup>2</sup>

Involves the definition of a **target trial** (ideal trial) we would like to conduct

Then, a causal analysis of observational data can be viewed as an **attempt to emulate this target trial** 

#### Background

Clinical contex Challenges

Trial emulation

#### Methods

Duplication and censoring Weights Outcome model Balance 1-year survival



### Framework to emulate trials from observational data<sup>2</sup>

Involves the definition of a **target trial** (ideal trial) we would like to conduct

Then, a causal analysis of observational data can be viewed as an **attempt to emulate this target trial** 

OXFORD JOURNALS American Journal of Epidemiology

Am J Epidemiol. 2016 Apr 15; 183(8): 758–764. Published online 2016 Mar 18. doi: <u>10.1093/aje/kwv254</u> PMCID: PMC4832051 PMID: 26994063

Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available

Miguel A. Hernán\* and James M. Robins

#### Background

Clinical contex Challenges

Trial emulation

#### Methods

Duplication and censoring Weights Outcome model Balance 1-year survival



In observational studies, immortal-time bias occurs when  $T_0$  and treatment initiation do not coincide



Clinical contex Challenges

Trial emulation

#### Methods

Duplication and censoring Weights Outcome model Balance 1-year survival



In observational studies, immortal-time bias occurs when  $T_0$ and treatment initiation do not coincide

In our study: median time between NSCLC diagnosis ( $T_0$ ) and surgery= 29 days [0;49]

#### Background

Clinical contex Challenges

Trial emulation

#### Methods

Duplication and censoring Weights Outcome mode Balance 1-year survival



In observational studies, immortal-time bias occurs when  $T_0$ and treatment initiation do not coincide

In our study: median time between NSCLC diagnosis ( $T_0$ ) and surgery= 29 days [0;49]



Journal of Clinical Epidemiology Volume 79, November 2016, Pages 70-75

| - |  | - |  |
|---|--|---|--|
|   |  |   |  |
|   |  |   |  |
|   |  |   |  |
|   |  |   |  |
|   |  |   |  |
|   |  |   |  |
|   |  |   |  |

Background

Clinical contex Challenges

Trial emulation

#### Methods

Duplication and censoring Weights Outcome model Balance 1-year survival

Discussion

Original Article

Specifying a target trial prevents immortal time bias and other self-inflicted injuries in observational analyses

Miguel A. Hernán <sup>a, b, c</sup> A 🖾, Brian C. Sauer <sup>d</sup>, Sonia Hernández-Díaz <sup>a</sup>, Robert Platt <sup>e, f, g</sup>, Ian Shrier <sup>g</sup>





Emulated trials & immortal-time bias

### Data











What is the causal effect on 1 year survival of surgery within 6 months following NSCLC diagnosis among patients >70?

# **Inclusion criteria**





TNM stage I-II

younger patients

### Exposure and outcome





LSHTM - October 7<sup>th</sup>, 2019





Per protocol effect: "intention" to treat unknown

### Causal contrasts:

- Difference in 1 year survival probabilities
- 1 year difference in restricted mean survival time







Emulated trials & immortal-time bias

LSHTM - October 7<sup>th</sup>, 2019





Emulated trials & immortal-time bias

LSHTM - October 7th, 2019









Emulated trials & immortal-time bias

LSHTM - October 7th, 2019

# **Duplication and censoring**





### Trial arm $\neq$ observed treatment

### INFORMATIVE CENSORING

- Censored in the `no surgery' arm at time of

- Followed-up in the 'Surgery' arm until death



Emulated trials & immortal-time bias

# **Duplication and censoring**





### Trial arm $\neq$ observed treatment

#### INFORMATIVE CENSORING

- Censored in the `Surgery' arm at 6 months

- Followed-up in the `No Surgery' arm for 1

Emulated trials & immortal-time bias

# **Censoring weights**



### Model 1: weight model

Weights at each time of event including: age, sex, deprivation, stage, performance status, comorbidities, emergency presentation

# **Censoring weights**



### Model 1: weight model

Weights **at each time of event** including: age, sex, deprivation, stage, performance status, comorbidities, emergency presentation

To estimate these weights we compared:

- Cox proportional hazards model
- **Flexible Cox** model using GAM: Cox model with smooth functions (penalized splines) for continuous covariates<sup>3</sup>
- Survival forest: ensemble method to estimate non parametrically the survivor function<sup>4</sup>





### Model 2: outcome model

Comparison of survival functions

Emulated trials & immortal-time bias

LSHTM - October 7<sup>th</sup>, 2019

# Outcome model



### Model 2: outcome model

Comparison of survival functions

On the original dataset:

- Naive approach: unweighted Kaplan-Meier
- G-computation using a flexible hazard regression model (B-splines)<sup>4</sup>

# Outcome model



### Model 2: outcome model

Comparison of survival functions

On the original dataset:

- Naive approach: unweighted Kaplan-Meier
- G-computation using a flexible hazard regression model (B-splines)<sup>4</sup>

On the duplicated dataset:

- Unweighted Kaplan-Meier
- Weighted Kaplan-Meier (with the 3 sets of weights)

# Balance at 6 months





Emulated trials & immortal-time bias

LSHTM - October 7th, 2019

# Balance over time: an example





Emulated trials & immortal-time bias

LSHTM - October 7<sup>th</sup>, 2019

# Balance over time: an example





Emulated trials & immortal-time bias

LSHTM - October 7<sup>th</sup>, 2019

# 1-year survival





Emulated trials & immortal-time bias

LSHTM - October 7th, 2019

# 1-year survival





Emulated trials & immortal-time bias

LSHTM - October 7th, 2019

# 1-year survival





Emulated trials & immortal-time bias

LSHTM - October 7th, 2019





Emulated trials & immortal-time bias

LSHTM - October 7th, 2019





Emulated trials & immortal-time bias

LSHTM - October 7th, 2019





Emulated trials & immortal-time bias

LSHTM - October 7th, 2019





Emulated trials & immortal-time bias

LSHTM - October 7th, 2019

# HRs and Differences in Survival



|   | Method                                                  | n            | Difference in<br>1 year Survival (%) |
|---|---------------------------------------------------------|--------------|--------------------------------------|
| - | Naïve (unadjusted)<br>G-computation*                    | 2309<br>2309 | 22.4 [18.1;26.9]<br>13.7 [10.2;18.0] |
|   | Emulation**<br>Unweighted                               | 4618         | 17.4 [14.6: 20.1]                    |
|   | IPCW-Cox weights<br>IPCW-GAM weights<br>IPCW-SF weights |              | 10.9 [7.9; 15.3]<br>10.4 -<br>10.7 ? |

\*Normal-based bootstrap confidence interval.

The **difference in RMST** is another useful measure in this context









Balance between arms over time using graphical methods





Balance between arms over time using graphical methods

Better balance obtained using a flexible weight model





Balance between arms over time using graphical methods

Better balance obtained using a flexible weight model

Further work needed to:

- Develop more flexible weighted analysis models
- Determine how to **estimate the variance** of different measures of interest, accounting for uncertainty in weight estimation
- Investigate the performance of survival forests in this context

### References



<sup>1</sup> Belot A *et al.* Association between age, deprivation and specific comorbid conditions and the receipt of major surgery in patients with non-small cell lung cancer in England: A population-based study. Epub ahead of print: 2018. doi:10.1136/ thoraxjnl-2017-211395

<sup>2</sup> Hernan M and Robins J. Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available. Am J Epidemiol. 2016 Apr 15; 183(8): 758-764.

<sup>3</sup> Wood S. **Generalized Additive Models: An Introduction with R**, Second Edition. Chapman & Hall/CRC Texts in Statistical Science.

<sup>4</sup> Charvat H *et al.* A multilevel excess hazard model to estimate net survival on hierarchical data allowing for non-linear and non-proportional effects of covariates. Stat Med 2016. doi: 10.1002/sim.6881